首页> 外文OA文献 >Electromagnetic Field Theory in (N+1)-Space-Time: AModern Time-Domain Tensor/Array Introduction
【2h】

Electromagnetic Field Theory in (N+1)-Space-Time: AModern Time-Domain Tensor/Array Introduction

机译:(N + 1)-时空中的电磁场理论:现代时域张量/阵列介绍

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a modern time-domain introduction is presented for electromagnetic field theory in (N+1)-spacetime. It uses a consistent tensor/array notation that accommodates the description of electromagnetic phenomena in N-dimensional space (plus time), a requirement that turns up in present-day theoretical cosmology, where a unified theory of electromagnetic and gravitational phenomena is aimed at. The standard vectorial approach, adequate for describing electromagnetic phenomena in (3+1)-space-time, turns out to be not generalizable to (N+1)-space-time for N > 3 and the tensor/array approach that, in fact, has been introduced in Einstein’s theory of relativity, proves, together with its accompanying notation, to furnish the appropriate tools. Furthermore, such an approach turns out to lead to considerable simplifications, such as the complete superfluousness of standard vector calculus and the standard condition on the right-handedness of the reference frames employed. Since the field equations do no more than interrelate (in a particular manner) changes of the field quantities in time to their changes in space, only elementary properties of (spatial and temporal) derivatives are needed to formulate the theory. The tensor/array notation furthermore furnishes indications about the structure of the field equations in any of the space-time discretization procedures for time-domain field computation. After discussing the field equations, the field/source compatibility relations and the constitutive relations, the field radiated by sources in an unbounded, homogeneous, isotropic, lossless medium is determined. All components of the radiated field are shown to be expressible as elementary operations acting on the scalar Green’s function of the scalar wave equation in (N+1)-spacetime. Time-convolution and time-correlation reciprocity relations conclude the general theory. Finally, two items on field computation are touched upon: the space-time-integrated field equations method of computation and the time-domain Cartesian coordinate stretching method for constructing perfectly matched computational embeddings. The performance of these items is illustrated in a demonstrator showing the 1-D pulsed electric-current and magnetic-current sources excited wave propagation in a layered medium.
机译:在本文中,对(N + 1)-时空中的电磁场理论进行了现代时域介绍。它使用一致的张量/数组符号来适应N维空间(加上时间)中电磁现象的描述,这一要求在当今的理论宇宙学中提出,电磁学和引力现象的统一理论旨在实现这一理论。标准向量方法足以描述(3 + 1)-时空中的电磁现象,但是对于N> 3以及张量/数组方法,标准向量方法无法推广到(N + 1)-时空。事实上,爱因斯坦的相对论已经引入了这一事实,并证明了其相对应的符号来提供适当的工具。此外,这种方法导致了相当大的简化,例如标准矢量演算的完全多余以及所采用参考帧右手性的标准条件。由于场方程只不过是将场量的时间变化与它们的空间变化相互关联(以特定的方式),因此只需要(空间和时间)导数的基本性质来表述该理论。张量/阵列符号还提供了用于时域场计算的任何时空离散化过程中场方程结构的指示。在讨论了场方程,场/源相容性关系和本构关系之后,确定了源在无界,均匀,各向同性,无损介质中辐射的场。辐射场的所有分量都显示为可表示为在(N + 1)时空中作用于标量波动方程的标量格林函数的基本运算。时间卷积和时间相关互惠关系总结了一般理论。最后,涉及场计算的两个项目:时空积分场方程的计算方法和时域笛卡尔坐标拉伸方法,用于构造完全匹配的计算嵌入。在演示器中说明了这些项目的性能,该演示器显示了1-D脉冲电流和磁电流源激发波在分层介质中的传播。

著录项

  • 作者

    De Hoop, A.T.;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号